

3D Cell Culture Product Intro

Bio-Byblos Biomedical

Rundown

- **Product Intro**
 - Cellusponge Series
 - Go Matrix
- Applications
- **Upcoming Products**
 - Degradable series
 - Cellusponge CB series
 - Cell Alignment plate
 - Vivoalign

Cellusponge Series

Cellusponge

- 3D HPC (Hydroxypropylcellulose) scaffold.
- Designed for cells requiring no specific ligands and various cell lines.

Cellusponge-Coll(Cellusponge coating collagen)

- Used in stem cells.
- HMSC cells grew 14 times after 7 days and differentiate into neurons and glial cells after 14 days (Usually it takes 28 days).

Cellusponge-Gal(Cellusponge coating galactose)

- Designed for hepatocyte cells, especially primary hepatocytes.
 Hepatocytes formed 3D, functional spheroids after 1 day of seeding and the spheroids maintained stable for at least 40 days and up to 100 days.

Cellusponge Series

Close-up of 48-well plate based thin sponge

One piece of Cellusponge

Cellusponge Series Package

Cellusponge Series

3D HPC scaffold Irregular pore size between 100 - 200 µm

Cellusponge porous cross section

Aqueous macroporosity maintenance of soft Cellusponge

One Sponge/Scaffold

Application of Cellusponge: General Soft Tissue 3D Culture

NIH 3T3 in 3D Cultivation in Native Cellusponge (Cellusponge without any conjugated ligands)

Yue et al. Biomaterials (2010)

Applications of Cellusponge-Gal:3D Primary Rat Hepatocyte Culture

Albumin Secretion & Urea Synthesis of Rat Hepatocyte Spheroids in Cellusponge-Gal

day 5

day 3

day 1

Immunoflurescence

Nugraha et al. Biomaterials (2011)

Applications of Cellusponge-Gal: 3D Primary Rat Hepatocyte Culture

Bile Excretion of Fluorescence Diacetate

Transmission Electron Images of Bile Canaliculi of the Hepatocyte Spheroids

Nugraha et al. Biomaterials (2011)

Cellusponge-Collagen for Stem Cell Differentiation

Neuron cells differentiation from human mesenchymal stem cells on Cellusponge-collagen after a) 2 days; b) 7 days; c) 14 days.

The red arrow: the cell body; the green arrow: neurite

Cell Types-Cellusponge Series

Cellusponge

Cell scope: cancer cell lines e.g. MCF-7 & MDA-MDB, mouse fibroblasts NIH3T3, human foreskin fibroblast HFF.

Applications: soft matrix for 3D cell culture, 3D tumour model.

Cellusponge-Gal

Cell scope: primary rat and human cryopreserved hepatocytes, hepatocyte cell lines HepG2,C3A & Huh7.5.

Applications: in vitro drug safety testing, 3D cell culture model for hepatitis virus infection and replication study, hepatocyte-like cells maturation in differentiation study.

Cellusponge-Coll

Cell scope: mouse and human embryonic stem cells (mESC & hESC), human mesenchymal stem cells (hMSC), cardiomyocytes.

Applications: cardiomyocytes long term 3D culture, mESC & hESC &hMSC cells differentiation.

Cell Types-Go Matrix

- Epithelial cell
 - e.g. MDCK cells
- Muscle cell
 - e.g. C2C12
 - myoblast
- •Connective tissue

e.g. 3T3 fibroblast

Go Matrix

Go matrix in Package

One piece of Go matrix

Wet form
Go matrix
(customized)

Dry form Go matrix in 24-well plate

The structure of Go Matrix

Go Matrix

3D Gelatin scaffold Pore size: 60µm~200µm

Top view of one Go matrix

Side view of one Go matrix: The array of uniform pores

Uniform Pore size

- •60 µm
- •90 µm
- •130 µm (Standard)

Myoblast in Go Matrix

Myoblast (C2C12)

Myotube (C2C12)

MDCK in Go Matrix

Jing-ying Lin et al Morphology and organization of tissue cells in 3D microenvironment of monodisperse foam scaffolds. Soft Matter, 2011

hMSC in Go Matrix

Low Cell Number

Scale bar: 100 um

Applications

- General soft tissue 3D culture
- In vivo study(Not tested yet)
- Stem cell differentiation platforms
- 3D primary cell culture model
- Drug/anti-viral testing

Upcoming Products

DEGRADABLE 3D SCAFFOLD

- 3D degradable comparison
- Cellusponge CB Series

CELL ALIGNMENT PLATE

Vivoalign

Degradable 3D Scaffold

- **Biodegradable** 3D scaffold
 - Can't control degrading time
 - Example
 - Go Matrix
- Degradable 3D scaffold when you need
 - Obtaining the cells at the time you need
 - Examples
 - Cellusponge CB Series
 - Difference b/w 3D hydrogel type products & Cellusponge CB series
 - Cell morphology before being degraded

Degradable 3D Scaffold-Cellusponge CB Series

- is a quick and easy way to recover cells or spheroids from Cellusponge CB series, using CBX (a proportional-diluted dissolving buffer).
- is designed to dissolve Cellusponges CB series quickly & completely without disrupting cell spheroids, clusters or other 3D structures.

Protocol of Cellusponge CB Series

Degradable 3D Scaffold-Cellusponge CB Series

Cellusponge CB Series

- Cellusponge CB
- Cellusponge CB-Gal
- Cellusponge CB-Coll

Package of
Dissolving buffer-CBX

Package of Cellusponge CB Series

Cell Alignment Plate-Vivoalign

- Enhancing cell differentiation
- Increasing morphogenesis
- More in-vivo-like in cells, e.g. cardiac myoblast, skeletal myoblast, etc.
- Material used is proved to be coated various proteins, ECM & peptides

Cell Alignment Plate-Vivoalign

H9C2 cells on the Vivoalign had formed long thin multinucleated tubes (above) while those on 2D petri dish had broader, shorter & unaligned multinucleated cells(below).

Cell Alignment Plate-Vivoalign

Differentiation of C2C12 cells on the Vivoalign fused to form longer myotubes. (above) & those on 2D petri dish(below).

Vivoalign Applications

- Cell Biology
- Cell Proliferation
- Drug Screening
- **ECM Production**
- **Engineering Muscle Tissue**
- **Stem Cell Differentiation**
- Mechanobiology Study

